Fuzzy Partitional Clustering Algorithms
نویسندگان
چکیده
Fuzzy partitional clustering algorithms are widely used in pattern recognition field. Until now, more and more research results on them have been developed in the literature. In order to study these algorithms systematically and deeply, they are reviewed in this paper based on c-means algorithm, from metrics, entropy, and constraints on membership function or cluster centers. Moreover, the advantages and disadvantages of the typical fuzzy partitional algorithms are discussed. It is pointed out that the standard FCM algorithm is robust to the scaling transformation of dataset, while others are sensitive to such transformation. Such conclusion is experimentally verified when implementing the standard FCM and the maximum entropy clustering algorithm. Finally, the problems existing in these algorithms and the prospects of the fuzzy partitional algorithms are discussed.
منابع مشابه
A Particle Swarm Optimization based fuzzy c means approach for efficient web document clustering
There is a need to organize a large set of documents into categories through clustering so as to facilitate searching and finding the relevant information on the web with large number of documents becomes easier and quicker. Hence we need more efficient clustering algorithms for organizing documents. Clustering on large text dataset can be effectively done using partitional clustering algorithm...
متن کاملBias-correction fuzzy clustering algorithms
Keywords: Cluster analysis Fuzzy clustering Fuzzy c-means (FCM) Initialization Bias correction Probability weight a b s t r a c t Fuzzy clustering is generally an extension of hard clustering and it is based on fuzzy membership partitions. In fuzzy clustering, the fuzzy c-means (FCM) algorithm is the most commonly used clustering method. Numerous studies have presented various generalizations o...
متن کاملPartitional fuzzy clustering methods based on adaptive quadratic distances
This paper presents partitional fuzzy clustering methods based on adaptive quadratic distances. The methods presented furnish a fuzzy partition and a prototype for each cluster by optimizing an adequacy criterion based on adaptive quadratic distances. These distances change at each algorithm iteration and can either be the same for all clusters or different from one cluster to another. Moreover...
متن کاملGeneral c-Means Clustering Model and Its Application
Considered many partitional clustering algorithms are originated from the definition of mean, we propose a new clustering model---general c-means clustering algorithm (GCM). Generally, when the data set is clustered into c (c>1) subsets, each subset is often expected to have a different prototype (or cluster center) than others. Therefore, we propose the definition of undesirable solution of cl...
متن کاملPerformance Comparison of Hard and Soft Approaches for Document Clustering
There is a tremendous spread in the amount of information on the largest shared information source like search engine. Fast and standards quality document clustering algorithms play an important role in helping users effectively towards vertical search engine, World Wide Web, summarizing & organizing information. Recent surveys have shown that partitional clustering algorithms are more suitable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004